Buddipole vertical for 80m

I spent the pleasant sunny part of the final day of autumn testing a vertical antenna for 80 metres using Buddipole parts for home.

The back garden space here is barely 4 metres by 4 metres and for the moment the chimney is out of reach. While I have dreams of a magnetic loop for 80m, the vertical is more in reach now.

80m-vert-buddipole

I installed a counterpoise wire a few feet shy of 66 feet length hidden on a timber fence that runs down the side of the property. The idea is to connect a short fly lead to connect the hidden counterpoise when the antenna is deployed and then disconnect when it’s all packed away. Buddipole components don’t lend themselves to permanent installations. The counterpoise doesn’t follow the recommended dog leg arrangement and is higher off the ground than the 2 feet suggested.

The purpose yesterday was to establish how speedily the antenna could be assembled and adjusted for a frequency of interest such as a net.

Here’s a list of the items used along with the counterpoise

9′ telescopic whip 1
22 inch antenna arms 2
low band coil + clip 1
VersaTee 1
Buddipole short mast 1
Buddipole tripod 1
Balun 1

 

I was surprised how easily it all went together. The adjustment wasn’t as fiddly as I expected such a short antenna for this band would be, and appeared to give a useable bandwidth.

The Buddipole Low Band coil showing the coil tap for 80m
The Buddipole Low Band coil showing the coil tap for 80m

Assembly was straightforward. Set up the tripod and mast with only bottom two sections telescoped out. Attach the Versatee horizontally to the top of the mast. Connect the Low Band coil. Leave the red fly lead loose for the moment. Attach two 22 inch antenna arms to a long whip antenna fully extended. Then carefully attach that assembly to the top of the Versatee. I also connected a 1:1 balun between the Versatee and the iP30 SWR Analyser.

The next step is to simply drag the fly lead across the coil turns to identify the best spot to tap the coil. Background noise level rises as you get in the zone. I used the iP30 SWR analyser to narrow it down to a spot 16 turns up from the base of the coil.

This means I was shorting out the bottom 16 turns of the coil. The adjustment is too coarse on a turn by turn basis. You appreciate the value of being able to tap at 1/8 of a turn increments. (The coil is on an octagonal former.)

It took me a few measurements to realise that as I progressed left (from my point of view) I was decreasing the amount shorted out and hence increasing the loading inductance and so lowering the resonant frequency. It’s actually more confusing reading that sentence than understanding it in practice!

My target frequency was 3535kHz and this is a chart of the SWR readings I had when the coil tap was set at what I calculate to be 15 3/4 turns up from the base of the coil.

frequency SWR frequency SWR
3505 1.8:1  3550  1.1
3510 1.6  3555  1.1
3515 1.4  3560  1.1
3520 1.3  3565  1.2
3525 1.2  3570  1.3
3530 1.1  3575  1.4
3535 1.0  3580  1.5
3540 1.0  3585  1.6
3545 1.1  3590  1.8
The magic spot for my 80m vertical.
The magic spot for my 80 m vertical.

The 1.0:1 bandwidth was 10 kHz while at 1.5:1 it was in excess of 65 kHz.

From readings at the other possible coil tap points my guess is that at this frequency range each face of the coil moves the resonant frequency by about 4 kHz. One thing to be aware of with the Buddipole hardware is not to accidentally short out adjacent turns of the coil with the coil clip. It’s hard to do but I managed and it will throw your readings.

Next step of course is to make some contacts or at least activate the antenna on WSPR or JT65 to get an idea of whether the signal gets over the fence.

From checking the chart on page 146 of the ‘Buddipole in the Field‘ book by B. Scott Andersen, NE1RD, I estimate that my shorting tap at about 16 turns from the base means I’m using about 39-40 uH of loading to achieve resonance at 80m. So that’s a starting point if I wanted to build a more permanent and cheaper vertical installation.

Lightweight portable antennas

One of my favourite sites is Martin DK7ZB’s collection of pages detailing the construction of practical antennas for VHF and UHF.

I first visited the site following a link to designs for lightweight portable yagis that would be suitable for SOTA VHF activations. Under the link ‘2m/70cm-Yagis ultralight’, Martin describes a number of yagis for 2m and 70cm that use thin metre long aluminium welding rods mounted on PVC booms.

These Yagis are constructed with cheap lightweight materials for electric installations and you can mount and dismantle them without any tools. The boom is made of PVC-tubes with 16mm, 20mm or 25mm diameter, the element holders are the clamps for these tubes.” DK7ZB

What makes the designs particularly attractive is that they can be quickly assembled from a compact (admittedly metre long for 2m) pack you can carry on your ascent, even designs using a 2 metre long boom.

The components of a DK7ZB lightweight yagi suitable for SOTA or any portable operation

The welding rods – used for TIG welding – are available in Australia in 2.8mm and 3.2mm diameters from welding supplies shops. I’m still on the lookout for 4mm diameter rods. PVC conduit and the mounting clamps are readily available in VK from hardware stores.

I’ve managed to cut a suitable slot in the end of a 3.2mm aluminium welding rod using a Dremel with a thin cutting wheel. One suggested way of attaching the feedline to the driven element is to crimp the lines into thin slots like this.

Also of interest to  portable operator are the J Pole designs based on Wireman 450Ω window feedline. There are dimensions for bands from 2m down to 40m. The J pole is essentially a half wavelength dipole where the high feed impedance is transformed by a quarter-wave length matching section (the tail of the J) tapped at a suitable distance to yield a 50Ω match. Follow the ‘Wireman-J-Pole’ link in the left navigation. These pages remind you that the J-pole can be configured in any way so a 40m J pole in a Zepp arrangement starts to look quite practical if you have just under 10m of 450Ω feedline available. I want to start with the 6m design and see if I can make it robust enough with heat shrink etc for portable work.

Kits for the DK7ZB yagi designs are also available from nuxcom.de, Attila Kocis DL1NUX’s website. Both sites are in German and English.